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• Motivation
Frequent occurrence of tropical thin cirrus clouds

- Seasonal coverage of thin cirrus clouds is more than 50% near
the central region of the warm pool in the western Pacific
(Prabhakara et al., 1993).

- Cloud occurrence at Nauru as measured by lidar reveals that
high clouds occur on average 44% of the time (Comstock and
Ackerman, 2002).

• Objectives
- Detection and retrieval of sub-visible cirrus in “clear-sky” region

using MODIS 1.38 µm channel
-    Potential contamination of CERES “clear-sky” nighttime FOVs by thin

cirrus
-    Comparison between the CERES measurements of outgoing longwave

radiation (OLR) and AIRS-based simulation of OLR under clear sky
conditions



Adapted from Liou, 1980: An Introduction To
Atmospheric Radiation
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MODIS Cirrus Correction

Uncorrected Image Cirrus Image (1.38 µm) Cirrus Corrected Image

Gao, B.-C., P. Yang, W. Han, R.-R. Li, and W. Wiscombe, 2002: An algorithm
using visible and 1.38-ｵm channels to retrieve cirrus cloud reflectances from
aircraft and satellite data. IEEE Trans. Geosci. Remote Sens., 40, 1659-1668.



Deriving Cirrus Reflectance

True or isolated visible cirrus reflectance:
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Derivation of Γ
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Sample Look-up Tables

Meyer, K., P. Yang, and B.-C. Gao, 2004: Optical thickness of tropical cirrus
clouds derived from the MODIS 0.66 and 1.38-um channels. IEEE Trans.
Geosci. Remote Sens. 42, 833-841



Meyer, K., P. Yang, and B.-C. Gao, 2004: Optical thickness of tropical cirrus clouds derived 
from the MODIS 0.66 and 1.38-um channels. IEEE Trans. Geosci. Remote Sens. 42, 833-841

MODIS RGB Image MODIS 1.375-µm Image



Retrieved Optical Thickness

Meyer, K., P. Yang, and B.-C. Gao, 2004: Optical thickness of tropical cirrus clouds derived 
from the MODIS 0.66 and 1.38-um channels. IEEE Trans. Geosci. Remote Sens. 42, 833-841



Histograms of optical depth for each season. The distribution peaks strongly
at low optical depth. Using τ=0.02 as a detection limit, 44%, 39%, 47%, and
44% of the observations flagged as cloud-free have detectible thin cirrus
clouds for spring, summer, autumn, and winter, respectively.

(Dessler and Yang, J. Climate, 16, 1241-1247, 2003)

Detection limit
τ = 0.02



The fraction of “clear-sky” observations for 1°×1° boxes that have detectable
thin cirrus (optical depth exceeds 0.02) for each season (Spring, Summer ,
Autumn, and Winter from top to bottom panel). The fraction of observations
shows the seasonal variations along with deep convective regions.
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The optical depth of tropical thin cirrus for the pixels flagged as “clear-
sky” by MODIS for each season (Spring, Summer, Autumn, and Winter
from top to bottom panel). The optical depth is averaged over 1°×1° boxes,
same as in fraction of observations. The pattern of optical depth is very
similar to that of fraction of observations.
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Sub-visible cirrus
under “clear-sky” conditions

• Radiative Forcing
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                          (a)                                                                     (b)

Cloud radiative forcing (a) at the top of atmosphere and (b) at the surface for June
2005. As shown in the sensitivity study, thin cirrus clouds have a net positive cloud
radiative forcing at the top of atmosphere and a net negative forcing at the bottom of
atmosphere.
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Potential Contamination of CERES
“Clear-Sky” FOVs by Thin Cirrus

• Over CERES “clear-
sky” FOVs, CERES
OLR is lower than
simulated OLR by
– ~4.2% (longwave)
– ~4.5% (window)

 
Lee, Y. K., P. Yang, Y. Hu, B. A. Baum,  N. G. Loeb, and B.-C. Gao, 2006: Potential nighttime
contamination of CERES clear-sky field of view by optically thin cirrus during the CRYSTAL-FACE
campaign. J. Geophys. Res. Vol. 111, No. D9, D09203 10.1029/2005JD006372



Lee, Y. K., P. Yang, Y. Hu, B. A. Baum,  N. G. Loeb, and B.-C. Gao, 2006: Potential nighttime
contamination of CERES clear-sky field of view by optically thin cirrus during the CRYSTAL-FACE
campaign. J. Geophys. Res. Vol. 111, No. D9, D09203 10.1029/2005JD006372

Distribution of the optical depths of thin cirrus clouds retrieved from the
difference of observed and simulated radiances by assuming various
effective particle sizes. Panel (a): results based on the longwave band data;
panel (b) results based on the window band data.

 



Potential Contamination of CERES
“Clear-Sky” FOVs by Thin Cirrus

• Sensitivity study

  atmo temperature profile ±1K atmo water vapor ±10%



CERES OLR VS. AIRS OLR

• Methodology
– Use CERES Aqua SSF edition 2a data
– Consider those CERES measurements where >

96% of the collocated MODIS cloud-mask
measurements are clear

– Combine with AIRS measurements within ~20 km
of the CERES measurement

– Calculate TOA flux from CERES surface skin
temperature and AIRS profiles of q, T, and O3

– Nighttime, ocean, March and September 2005



Model
 Chou et al., 2001: A Thermal Infrared Radiation Parameterization

for Atmospheric Studies. NASA Tech. Memo. 104606, vol. 19, 1-55.
 The infrared spectrum (0~3000 cm-1) is divided into 9 bands and a

subband, in total 10 bands
 Using the Air Force Geophysical Laboratory HITRAN data base

(1996 version)
 The parameterization includes the absorption due to major gaseous

absorption (water vapor, CO2, O3) and most of the minor trace
gases (N2O, CH4, CFC’s) as well as clouds and aerosols.

 The gaseous transmission function is computed either using the k-
distribution method or the table look-up method.

 Accuracy: within 1% of the high spectral-resolution line-by-line
calculation

 In this calculation, band 9 (1900~3000 cm-1) is excluded to match
with CERES TOA flux band (50~2000 cm-1). The flux at 30 km
between 1900 and 2000 cm-1 is 0.9 Wm-2 using tropical
atmosphere.

 Vertical atmospheric profiles from AIRS are used, including
temperature, water vapor, and ozone profile

 Atmosphere is divided into 100 layers from surface to 100 km and
the AIRS profiles are interpolated at each level.



Sept. 2005, 30°N-30°S
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Previous Work
Paper model - measurement

(W/m^2) notes

Ho et al., 1998 2-4 estimated 30N-30S from Fig. 2 for
March and Sept.

Collins and Inamdar,
1995 2-6 difference is a function of RH

Inamdar and
Ramanathan, 1994 0.5 (st. dev. = 9) 20N-20S, all months of 1985



March 2005

-20

-10

0

10

20

360270180900

300

290

280

270

Clear-sky OLR

model - meas.

-20

-10

0

10

20

360270180900

 7 

 6 

 6 
 6  6 

 6 
 6 

 6 

 5 

 5 

 5 

 5 

 5 

 5 
 5 

 5 

 5 
 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 

 4 
 3 



data from 9/05
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Surface T 2.0

Lower Trop T 2.8

Upper Trop T 0.6

Lower Trop q -7.9

Upper Trop q -6.3

Compare to 299 to 303 K
303 K OLR
289.3 W/m^2

299 K OLR
297.7 W/m^2

∆OLR
-8.4 W/m^2

Lower Trop = 1000-500 hPa, Upper Trop = 500-100 hPa

data from 9/05



Lower Trop = 1000-500 hPa, Upper Trop = 500-100 hPa

Compare to 295 to 299 K
299 K OLR
297.7 W/m^2

295 K OLR
285.3 W/m^2

∆OLR
12.4 W/m^2

299 K to: 295 K 303 K

Surface T 8.3 2.0

Lower Trop T 9.7 2.8

Upper Trop T 4.8 0.6

Lower Trop q -7.6 -7.9

Upper Trop q -3.2 -6.3

data from 9/05



Conclusions
• The radiative effect of sub-visual thin

cirrus clouds is significant
• OLR calculated using AIRS

measurements agrees with CERES
measurements within ~5 W/m^2
– Agreement best in the deep tropics and

worst in the subtropics
• We are also studying the mechanisms

that regulate clear-sky OLR
•  T and q are the most important factors

– T dominates below 298 K, q dominates
above



Ongoing Work
• Investigation of the radiative forcing of ice

clouds using MOD06/MYD06 (collection 5),
AIRS and CERES data
Yang, P.,  L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H.-L.
Huang, M. D. King and S. Platnick, 2007: Differences between
Collection 4 and 5 MODIS ice cloud optical/microphysical
products and their impact on radiative forcing simulations, IEEE
Trans. on Geosci. and Remote Sensing (in press)

Hong, G., P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, M. D. King
and S. Platnick, 2007: High cloud properties from three years of
MODIS Terra and Aqua Data over the Tropics, J. Appl. Meteor.
(in press)


